Senin, 20 Mei 2013

sekilas tentang EDM (Electric Discharge Machine



EDM singkatan electrical discharge machining, dalam bahasa sehari-hari kadang-kadang juga disebut sebagai spark machining, erosi percikan, terbakar, atau kawat erosi adalah suatu proses manufaktur yang mana ingin membentuk
suatu objek, yang disebut benda kerja, dapat diperoleh dengan menggunakan percikan listrik.
Electrical Discharge Machining (EDM) adalah proses pemotongan logam yang  dilakukan dengan penciptaan ribuan kotoran per detik. listrik mengalir di antara elektroda dan benda kerja dalam cairan dielektrikum. Pada saat proses pemotongan, akan muncul uap logam yang sangat kecil pada wilayah erosi. EDM dapat digunakan pada bahan yang konduktif listrik, termasuk bahan-bahan eksotis seperti Waspaloy atau Hastaloy, yang sangat sulit dikerjakan mesin dengan menggunakan metode konvensional.

Sejarah Perkembangan Mesin Erosi

            Pada tahun 1770, Priestly melakukan observasi tentang efek erosi lompatan listrik. Sambil mencoba mengeliminasi dampak pada hubungan pendek arus listrik, B.R dan N.I Lazarenko manggali pengetahuan tentang efek destruktif pada proses lompatan listrik (electric discharge) dan mengembangkan proses erosi pada pengerjaan logam yang bersifat konduktor.
Pada tahun 1943, lahirlah proses pengerjaan material secara erosi yang dikenal dengan Electric Discharge Machine (EDM). Disebut demikian karena proses pelepasan material terjadi antara dua material konduktor yang terpisah satu sama lainyang dipisahkan dengan cairan non konduktor yang disebut dielektrikum.
Prinsip kerja EDM ini disebut sebagai circuit, yang digunakan sebagai dasar pembuatan mesin EDM. Saat ini banyak aplikasi pada mesin erosi lain termasuk wire cut.

Prinsip Dasar Erosi secara Fisika

Prinsip dasar erosi secara fisika dapat dijelaskan sebagai berikut :
  1. Untuk menciptakan pelepasan material di antara dua elektrode, harus ada tegangan pada tahanan dalam pada jarak kerja bunga api ( jarak antara elektroda dengan material). Tingginya tegangan tersebut tergantung dari :
a.       Jarak antara elektroda dan benda kerja
b.      Daya hantar dari cairan dielektrikum
c.       Tingkat polusi (kotor) pada celah bunga api (GAP)
  1. Proses pelepasan material akan dimulai pada tempat dimana terjadi medan listrik terkuat akan terbentuk.
  2. Karena pengaruh medan listrik, elektron-elektron dan ion-ion positif berkumpul / terkonsentrasi pada satu titik pada tegangan tinggi, dan dengan cepat membentuk terusan (channel) yang menghantarkan listrik.
  3. Pada tahap ini, arus listrik akan mengalir dan lompatan bunga api terjadi di antara elektroda, yang menyebabkan sejumlah tabrakan antara partikel-pertikel. Pada saat yang sama terjadi gelembung gas yang menguap pada elektroda dan dielektrikum. Tekanan akan meningkat secara tiba-tiba hingga menjadi sangat tinggi. Di sini, zona plasma terbentuk, yang akan dengan cepat meningkatkan suhu menjadi 8000-12000C, dan menciptakan peningkatan secara cepat tabrakan partikel-partikel yang menyebabkan melelehnya material pada area lokal antara kedua konduktor tersebut.
  4. Pada saat tingkat arus listrik berhenti, terjadi penurunan suhu secara tiba-tiba, yang menyebabkan implesi dari gelembung, memberikan gaya-gaya bebas yang akan melemparkan material yang meleleh keluar dari tempat yang menjadi kawah.
  5. Material yang terlepas  (kotoran) akan dibuat menjadi solid lagi di dalam dielektrikum dalam bentuk butiran-butiran halus . Pengikisan material yang terjadi antara elektroda dan benda kerja tidak sama, tergantung pada polaritas, titik api, dan electrode feed rate. Erosi yang terjadi pada material disebut pamakanan.

Cara Kerja EDM

Pada Proses awal EDM, elektrode yang berisi tegangan listrik didekatkan ke benda kerja (elektrode positif mendekati benda kerja/turun). Di antara dua elektrode ada minyak isolasi (tidak menghantarkan arus listrik), yang pada EDM dinamakan cairan dielectric (dielektrikum). Walaupun cairan dielektrikum adalah sebuah isolator yang bagus, beda potensial listrik yang cukup besar menyebabkan cairan membentuk partikel yang bermuatan, yang menyebabkan tegangan listrik melewatinya dari elektrode ke benda kerja. Dengan adanya graphite dan partikel logam yang tercampur ke cairan dapat membantu transfer tegangan listrik dalam dua cara: partikel-partikel (konduktor) membantu dalam ionisasi minyak dielektrik dan membawa tegangan listrik secara langsung, serta partikel-partikel dapat mempercepat pembentukan tegangan listrik dari cairan. Daerah yang memiliki tegangan listrik paling kuat adalah pada titik di mana jarak antara elektrode dan benda kerja paling dekat, seperti pada titik tertinggi yang terlihat di gambar. Grafik menunjukkan bahwa tegangan (beda potensial) meningkat, tetapi arusnya nol.
Ketika jumlah partikel bermuatan meningkat, sifat isolator dari cairan dielektrik menurun sepanjang tengah jalur sempit pada bagian terkuat di daerah tersebut. Tegangan meningkat hingga titik tertinggi tetapi arus masih nol. Arus mulai muncul ketika cairan berkurang sifat isolatornya menjadi yang paling kecil. Beda tegangan mulai menurun. Panas muncul secara cepat ketika arus listrik meningkat dan tegangan terus menurun drastis. Panas menguapkan sebagian cairan, benda kerja, dan elektrode, serta jalur discharge mulai terbentuk antara elektrode dan benda kerja. Gelembung uap melebar ke samping, tetapi gerakan melebarnya dibatasi oleh kotoran-kotoran ion di sepanjang jalur discharge. Ion-ion tersebut dilawan oleh daerah magnet listrik yang telah timbul. Arus terus meningkat dan tegangan menurun. Sebelum berakhir, arus dan tegangan menjadi stabil, panas dan tekanan di dalam gelembung uap telah mencapai ukuran maksimal, dan sebagian logam telah dihilangkan. Lapisan dari logam di bawah kolom discharge pada kondisi mencair, tetapi masih berada di tempatnya karena tekanan dari gelembung uap. Jalur discharge sekarang berisi plasma dengan suhu sangat tinggi, sehingga terbentuk uap logam, minyak dielektrik, dan karbon pada saat arus lewat dengan intensif melaluinya. Pada akhirnya, arus dan tegangan turun menjadi nol. Temperatur turun dengan cepat, tabrakan gelembung dan menyebabkan logam yang telah dicairkan lepas dari benda kerja. Cairan dielektrik baru masuk di antara elektrode dan benda kerja, menyingkirkan kotoran-kotoran dan mendinginkan dengan cepat permukaan benda kerja. Logam cair yang tidak terlepas membeku dan membentuk lapisan baru hasil pembekuan (recast layer). Logam yang terlepas membeku dalam bentuk bola-bola kecil menyebar di cairan dielektrik bersama-sama dengan karbon dari elektrode. Uap yang masih ada naik menuju ke permukaan. Tanpa waktu putus yang cukup, kotoran-kotoran yang terbentuk akan terkumpul membentuk percikan api yang tidak stabil. Situasi tersebut dapat membentuk DC arc, yang mana dapat merusak elektrode dan benda kerja.